4.5 Article

PDE4B5, a novel, super-short, brain-specific cAMP phosphodiesterase-4 variant whose isoform-specifying N-terminal region is identical to that of cAMP phosphodiesterase-4D6 (PDE4D6)

期刊

出版社

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/jpet.107.122218

关键词

-

向作者/读者索取更多资源

The cAMP-specific phosphodiesterase-4 (PDE4) gene family is the target of several potential selective therapeutic inhibitors. The four PDE4 genes generate several distinct protein-coding isoforms through the use of alternative promoters and 5'-coding exons. Using mouse transcripts, we identified a novel, super-short isoform of human PDE4B encoding a novel 5' terminus, which we label PDE4B5. The protein-coding region of the novel 5' exon is conserved across vertebrates, chicken, zebrafish, and fugu. Reverse-transcription-polymerase chain reaction (PCR) and quantitative (PCR) measurements show that this isoform is brain-specific. The novel protein is 58 +/- 2 kDa; it has cAMP hydrolyzing enzymatic activity and is inhibited by PDE4-selective inhibitors rolipram and cilomilast (Ariflo). Confocal and subcellular fractionation analyses show that it is distributed predominantly and unevenly within the cytosol. The 16 novel N-terminal residues of PDE4B5 are identical to the 16 N-terminal residues of the super-short isoform of PDE4D (PDE4D6), which is also brain-specific. PDE4B5 is able to bind the scaffold protein DISC1, whose gene has been linked to schizophrenia. Microarray expression profiling of the PDE4 gene family shows that specific PDE4 genes are enriched in muscle and blood fractions; however, only by monitoring the individual isoforms is the brain specificity of the super-short PDE4D and PDE4B isoforms revealed. Understanding the distinct tissue specificity of PDE4 isoforms will be important for understanding phosphodiesterase biology and opportunities for therapeutic intervention.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据