4.6 Article

Effect of electron-electron interaction on the phonon-mediated spin relaxation in quantum dots

期刊

PHYSICAL REVIEW B
卷 76, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.76.085305

关键词

-

向作者/读者索取更多资源

We estimate the spin relaxation rate due to spin-orbit coupling and acoustic phonon scattering in weakly confined quantum dots with up to five interacting electrons. The full configuration interaction approach is used to account for the interelectron repulsion, and Rashba and Dresselhaus spin-orbit couplings are exactly diagonalized. We show that electron-electron interaction strongly affects spin-orbit admixture in the sample. Consequently, relaxation rates strongly depend on the number of carriers confined in the dot. We identify the mechanisms which may lead to improved spin stability in few electron (> 2) quantum dots as compared to the usual one and two electron devices. Finally, we discuss recent experiments on triplet-singlet transitions in GaAs dots subject to external magnetic fields. Our simulations are in good agreement with the experimental findings, and support the interpretation of the observed spin relaxation as being due to spin-orbit coupling assisted by acoustic phonon emission.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据