4.2 Article

Difference between local and orbital dynamic stability during human walking

出版社

ASME
DOI: 10.1115/1.2746383

关键词

walking; falling; dynamic stability; Floquet multipliers; nonlinear dynamics

向作者/读者索取更多资源

Currently there is no commonly accepted way to define, much less quantify, locomotor stability. In engineering, orbital stability is defined using Floquet multipliers that quantify how purely periodic systems respond to perturbations discretely from one cycle to the next. For aperiodic systems, local stability is defined by local divergence exponents that quantify how the system responds to very small perturbations continuously in real time. Triaxial trunk accelerations and lower extremity sagittal plane joint angles were recorded front ten young healthy subjects as they walked for 10 min over level ground and on a motorized treadmill at the same speed. Maximum Floquet multipliers (Max FM) were computed at each percent of the gait cycle (from 0% to 100%) for each time series to quantify the orbital stability of these movements. Analyses of variance comparing Max FM values between walking conditions and correlations between Max FM values and previously published local divergence exponent results were computed. All subjects exhibited orbitally stable walking kinematics (i.e., magnitudes of Max FM < 1.0), even though these same kinematics were previously found to be locally unstable. Variations in orbital stability across the gait cycle were generally small and exhibited no systematic patterns. Walking on the treadmill led to small, but statistically significant improvements in the orbital stability of mediolateral (p=0.040) and vertical (p=0.038) trunk accelerations and ankle joint kinematics (p=0.002). However these improvements were not exhibited by all subjects (p <= 0.012 for subject X condition interaction effects). Correlations between Max FM values and previously published local divergence exponents were inconsistent and 11 of the 12 comparisons made were not statistically significant (r(2)<= 19.8%; p >= 0.049). Thus, the variability inherent in human walking, which manifests itself as local instability, does not substantially adversely affect the orbital stability of walking. The results of this study will allow future efforts to gain a better understanding of where the boundaries lie between locally unstable movements that remain orbitally stable and those that lead to global instability (i.e., falling).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据