4.5 Article

Unloaded rat Achilles tendons continue to grow, but lose viscoelasticity

期刊

JOURNAL OF APPLIED PHYSIOLOGY
卷 103, 期 2, 页码 459-463

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/japplphysiol.01333.2006

关键词

loading; hysteresis; unloading; creep

向作者/读者索取更多资源

Tendons can function as springs and thereby preserve energy during cyclic loading. They might also have damping properties, which, hypothetically, could reduce risk of microinjuries due to fatigue at sites of local stress concentration within the tendon. At mechanical testing, damping will appear as hysteresis. How is damping influenced by training or disuse? Does training decrease hysteresis, thereby making the tendon a better spring, or increase hysteresis and thus improve damping? Seventy-eight female 10-wk-old Sprague-Dawley rats were randomized to three groups. Two groups had botulinum toxin injected into the calf muscles to unload the left Achilles tendon through muscle paralysis. One of these groups was given doxycycline, as a systemic matrix metalloproteinase inhibitor. The third group served as loaded controls. The Achilles tendons were harvested after 1 or 6 wk for biomechanical testing. An increase with time was seen in tendon dry weight, wet weight, water content, transverse area, length, stiffness, force at failure, and energy uptake in all three groups ( P < 0.001 for each parameter). Disuse had no effect on these parameters. Creep was decreased with time in all groups. The only significant effect of disuse was on hysteresis ( P = 0.004) and creep ( P = 0.007), which both decreased with disuse compared with control, and on modulus, which was increased ( P = 0.008). Normalized glycosaminoglycan content was unaffected by time and disuse. No effect of doxycycline was observed. The results suggest that in growing animals, the tendons continue to grow regardless of mechanical loading history, whereas maintenance of damping properties requires mechanical stimulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据