4.8 Article

Long-term response toward inorganic carbon limitation in wild type and glycolate turnover mutants of the cyanobacterium Synechocystis sp strain PCC 68031[W]

期刊

PLANT PHYSIOLOGY
卷 144, 期 4, 页码 1946-1959

出版社

OXFORD UNIV PRESS INC
DOI: 10.1104/pp.107.103341

关键词

-

向作者/读者索取更多资源

Concerted changes in the transcriptional pattern and physiological traits that result from long-term (here defined as up to 24 h) limitation of inorganic carbon (C-i) have been investigated for the cyanobacterium Synechocystis sp. strain PCC 6803. Results from reverse transcription-polymerase chain reaction and genome-wide DNA microarray analyses indicated stable up-regulation of genes for inducible CO2 and HCO3- uptake systems and of the rfb cluster that encodes enzymes involved in outer cell wall polysaccharide synthesis. Coordinated up-regulation of photosystem I genes was further found and supported by a higher photosystem I content and activity under low C-i (LC) conditions. Bacterial-type glycerate pathway genes were induced by LC conditions, in contrast to the genes for the plant-like photorespiratory C-2 cycle. Down-regulation was observed for nitrate assimilation genes and surprisingly also for almost all carboxysomal proteins. However, for the latter the observed elongation of the half-life time of the large subunit of Rubisco protein may render compensation. Mutants defective in glycolate turnover (Delta glcD and Delta gcvT) showed some transcriptional changes under high C-i conditions that are characteristic for LC conditions in wild-type cells, like a modest down-regulation of carboxysomal genes. Properties under LC conditions were comparable to LC wild type, including the strong response of genes encoding inducible high-affinity C-i uptake systems. Electron microscopy revealed a conspicuous increase in number of carboxysomes per cell in mutant Delta glcD already under high C-i conditions. These data indicate that an increased level of photorespiratory intermediates may affect carboxysomal components but does not intervene with the expression of majority of LC inducible genes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据