4.8 Article

Muscle-specific knockout of PKC-λ impairs qlucose transport and induces metabolic and diabetic syndromes

期刊

JOURNAL OF CLINICAL INVESTIGATION
卷 117, 期 8, 页码 2289-2301

出版社

AMER SOC CLINICAL INVESTIGATION INC
DOI: 10.1172/JCI31408

关键词

-

资金

  1. NIDDK NIH HHS [U24 DK059635, R01 DK065969, R01 DK040936, DK30136, DK38079] Funding Source: Medline

向作者/读者索取更多资源

Obesity, the metabolic syndrome, and type 2 diabetes mellitus (T2DM) are major global health problems. Insulin resistance is frequently present in these disorders, but the causes and effects of such resistance are unknown. Here, we generated mice with muscle-specific knockout of the major murine atypical PKC (aPKC), PKC-lambda, a postulated mediator for insulin-stimulated glucose transport. Glucose transport and translocation of glucose transporter 4 (GLUT4) to the plasma membrane were diminished in muscles of both homozygous and heterozygous PKC-lambda knockout mice and were accompanied by systemic insulin resistance; impaired glucose tolerance or diabetes; islet beta cell hyperplasia; abdominal adiposity; hepatosteatosis; elevated serum triglycerides, FFAs, and LDL-cholesterol; and diminished HDL-cholesterol. in contrast to the defective activation of muscle aPKC, insulin signaling and actions were intact in muscle, liver, and adipocytes. These findings demonstrate the importance of aPKC in insulin-stimulated glucose transport in muscles of intact mice and show that insulin resistance and resultant hyperinsulinemia owing to a specific defect in muscle aPKC is sufficient to induce abdominal obesity and other lipid abnormalities of the metabolic syndrome and T2DM. These findings are particularly relevant because humans who have obesity, impaired glucose tolerance, and T2DM reportedly have defective activation and/or diminished levels of muscle aPKC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据