4.7 Article

Evaluation of the toxicity of ZnO nanoparticles to Chlorella vulgaris by use of the chiral perturbation approach

期刊

ANALYTICAL AND BIOANALYTICAL CHEMISTRY
卷 406, 期 15, 页码 3689-3695

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00216-014-7773-0

关键词

ZnO nanoparticles; nanotoxicity; Chiral perturbation; Reactive oxygen species; Zn2+; Algae

资金

  1. Project of Science and Technology Department of Zhejiang Province [2012C37058]
  2. Key Innovation Team of Science and Technology in Zhejiang Province [2010R50018]

向作者/读者索取更多资源

The toxicity of ZnO nanoparticles (NPs) has been widely investigated because of their extensive use in consumer products. The mechanism of the toxicity of ZnO NPs to algae is unclear, however, and it is difficult to differentiate between particle-induced toxicity and the effect of dissolved Zn2+. In the work discussed in this paper we investigated particle-induced toxicity and the effects of dissolved Zn2+ by using the chiral perturbation approach with dichlorprop (DCPP) as chiral perturbation factor. The results indicated that intracellular zinc is important in the toxicity of ZnO NPs, and that ZnO NPs cause oxidative damage. According to dose-response curves for DCPP and the combination of ZnO NPs with (R)-DCPP or (S)-DCPP, the toxicity of DCPP was too low to perturb the toxicity of ZnO NPs, so DCPP was suitable for use as chiral perturbation factor. The different glutathione (GSH) content of algal cells exposed to (R)-DCPP or (S)-DCPP correlated well with different production of reactive oxygen species (ROS) after exposure to the two enantiomers. Treatment of algae with ZnO NPs and (R)-DCPP resulted in reduced levels of GSH and the glutathione/oxidized glutathione (GSH/GSSG) ratio in the cells compared with the control. Treatment of algae with ZnO NPs and (S)-DCPP, however, resulted in no significant changes in GSH and GSH/GSSG. Moreover, trends of variation of GSH and GSH/GSSG were different when algae were treated with ZnSO4 center dot 7H(2)O and the two enantiomers. Overall, the chiral perturbation approach revealed that NPs aggravated generation of ROS and that released Zn2+ and NPs both contribute to the toxicity of ZnO NPs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据