4.6 Article

On the characteristics of ground motion rotational components using Chiba dense array data

期刊

EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS
卷 36, 期 10, 页码 1407-1429

出版社

WILEY
DOI: 10.1002/eqe.687

关键词

torsional motion; rocking motion; rotational response spectra; coherency function; Chiba dense array

向作者/读者索取更多资源

An effort is made to examine the properties of rotational (torsional and rocking) ground motions using Chiba dense array data. The Chiba array system, located 30km east of Tokyo, Japan, is composed of 15 boreholes with separation distances varying from 5 to 320m. This provides a unique opportunity to examine the characteristics of rotational components. For this purpose, 17 events are considered and rotational ground motions are evaluated using spatial derivatives of translational ones. The effects of seismological parameters and separation distances between stations on properties of rotational motions are examined, showing a sudden increase in rotational motions for the earthquakes with large magnitude or PGA and decrease of these motions with increasing separation distance. While the duration of torsional motion is found to be larger than translational ones, there is no significant difference between durations of rocking and vertical motions. The effects of separation distance and earthquake magnitude on rotational response spectra are also investigated. The normalized rotational response spectra are found to be strongly affected by separation distance. The spectral ratios of rotational and translational motions are not linearly proportional to period as suggested by the previous studies. Finally, the torsional motion is predicted from translation ones for different separation distances at the site. The comparison of the predicted and the calculated torsional motions reveals a weak estimation in close separation distances (< 30m) and satisfactory predictions in other cases. Copyright (c) 2007 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据