4.6 Article

Three-dimensional cardiac electrical imaging from intracavity recordings

期刊

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING
卷 54, 期 8, 页码 1454-1460

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TBME.2007.891932

关键词

cardiac electrical imaging; cardiac electrical tomography; catheter ablation; catheter mapping; electrocardiographic imaging; inverse problem

向作者/读者索取更多资源

A novel approach is proposed to image 3-D cardiac electrical activity from intracavity electrical recordings with the aid of a catheter. The feasibility and performance were evaluated by computer simulation studies, where a 3-D cellular-automaton heart model and a finite-element thorax volume conductor model were utilized. The finite-element method (FEM) was used to simulate the intracavity recordings induced by a single-site and dual-site pacing protocol. The 3-D ventricular activation sequences as well as the locations of the initial activation sites were inversely estimated by minimizing the dissimilarity between the intracavity potential measurements and the model-generated intracavity potentials. Under single-site pacing, the relative error (RE) between the true and estimated activation sequences was 0.03 +/- 0.01 and the localization error (LE) (of the initiation site) was 1.88 +/- 0.92 mm, as averaged over 12 pacing trials when considering 25 p,V additive measurement noise using 64 catheter electrodes. Under dual-site pacing, the RE was 0.04 +/- 0.01 over 12 pacing trials and the LE over 24 initial pacing sites was 2.28 +/- 1.15 mm, when considering 25 mu V additive measurement noise using 64 catheter electrodes. The proposed 3-D cardiac electrical imaging approach using intracavity electrical recordings was also tested under various simulated conditions and robust inverse solutions obtained. The present promising simulation results suggest the feasibility of obtaining 3-D information of cardiac electrical activity from intracavity recordings. The application of this inverse method has the potential of enhancing electrocardiographic mapping by catheters in electrophysiology laboratories, aiding cardiac resynchronization therapy, and other clinical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据