4.6 Article

Two cAMP-dependent pathways differentially regulate exocytosis of large dense-core and small vesicles in mouse β-cells

期刊

JOURNAL OF PHYSIOLOGY-LONDON
卷 582, 期 3, 页码 1087-1098

出版社

BLACKWELL PUBLISHING
DOI: 10.1113/jphysiol.2007.135228

关键词

-

向作者/读者索取更多资源

It has been reported that cAMP regulates Ca2+-dependent exocytosis via protein kinase A (PKA) and exchange proteins directly activated by cAMP (Epac) in neurons and secretory cells. It has, however, never been clarified how regulation of Ca2+-dependent exocytosis by cAMP differs depending on the involvement of PKA and Epac, and depending on two types of secretory vesicles, large dense-core vesicles (LVs) and small vesicles (SVs). In this study, we have directly visualized Ca2+-dependent exocytosis of both LVs and SVs with two-photon imaging in mouse pancreatic beta-cells. We found that marked exocytosis of SVs occurred with a time constant of 0.3 s, more than three times as fast as LV exocytosis, on stimulation by photolysis of a caged-Ca2+ compound. The diameter of SVs was identified as similar to 80 nm with two-photon imaging, which was confirmed by electron-microscopic investigation with photoconversion of diaminobenzidine. Calcium-dependent exocytosis of SVs was potentiated by the cAMP-elevating agent forskolin, and the potentiating effect was unaffected by antagonists of PKA and was mimicked by the Epac-selective agonist 8-(4-chlorophenylthio)-2'-O-methyl cAMP, unlike that on LVs. Moreover, high-glucose stimulation induced massive exocytosis of SVs in addition to LVs, and photolysis of caged cAMP during glucose stimulation caused potentiation of exocytosis with little delay for SVs but with a latency of 5 s for LVs. Thus, Epac and PKA selectively regulate exocytosis of SVs and LVs, respectively, in,beta-cells, and Epac can regulate exocytosis more rapidly than PKA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据