4.2 Article

Accurate charge density of the tripeptide Ala-ProAla with the maximum entropy method (MEM): influence of data resolution

出版社

INT UNION CRYSTALLOGRAPHY
DOI: 10.1107/S0108768107029655

关键词

-

向作者/读者索取更多资源

The accurate electron density of Ala-Pro-Ala is determined by the maximum entropy method (MEM), employing the same reflection data measured at 100 K which was used for a multipole refinement by Kalinowski et al. [(2007), Acta Cryst. Accepted for publication]. Properties of the electron density are compared with the corresponding properties of the static electron density from the multipole model and to the dynamic MEM electron density of trialanine at 20 K. It is thus shown that the increased thermal smearing at 100 K leads to lower electron densities in the bond critical points and atomic charges closer to zero for Ala-Pro-Ala than has been obtained for trialanine at 20 K. The influence of the resolution of the data is investigated by a series of MEM calculations. Atomic charges and atomic volumes are found not to depend on the resolution, but the charge density in the BCPs decreases with decreasing resolution of the dataset. The origin of this dependence is found to lie mostly in the more accurate estimate of the atomic displacement parameters (ADPs) for the higher-resolution datasets. If these effects are taken into account, meaningful information on chemical bonding can be obtained with data at a resolution better than d(min) = 0.63 angstrom. Alternatively, low- resolution X-ray diffraction data can be used in accurate electron-density studies by the MEM, if another source of accurate values of the ADPs is available, e. g. from refinements with multipole parameters from a database of transferable multipole parameters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据