4.8 Article

Combining surface chemistry with a FRET-based biosensor to study the dynamics of RhoA GTPase activation in cells on patterned substrates

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 129, 期 30, 页码 9264-+

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja072900m

关键词

-

向作者/读者索取更多资源

We combine a surface chemistry approach with a FRET-based biosensor to investigate the effect of changes in the extracellular microenvironment on the spatio-temporal dynamics of RhoA activation in cell protrusions. This approach is based on the use of microcontact printing to pattern self-assembled monolayers of alkanethiolates on gold, to generate cell adhesive and inert regions on the model surface, and the development of a compatible high-resolution fluorescence microscope that overcomes the intrinsic quenching of low concentration and intensity of fluorophores in live cells by the gold surface. Mouse embryonic fibroblasts expressing the RhoA biosensor, confined within the cell adhesive pattern, periodically extend protrusions to sample the inert region of the monolayer outside the pattern. We observed for the first time that RhoA activity is elevated at the leading edge of protrusions in the absence of substrate adhesion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据