4.3 Article Proceedings Paper

Two-step triangular-pattern phase-shifting method for three-dimensional object-shape measurement

期刊

OPTICAL ENGINEERING
卷 46, 期 8, 页码 -

出版社

SPIE-SOC PHOTOPTICAL INSTRUMENTATION ENGINEERS
DOI: 10.1117/1.2768616

关键词

structured light; profilometry; calibration; phase shifting; fringe projection; intensity ratio; shape measurement; surface geometry

类别

向作者/读者索取更多资源

Existing phase-shifting measurement methods involve processing of three acquired images or computation of functions that require more complex processing than linear functions. This paper presents a novel two-step triangular-pattern phase-shifting method of 3-D object-shape measurement that combines advantages of earlier techniques. The method requires only two image-acquisition steps to capture two images, and involves projecting linear grayscale-intensity triangular patterns that require simpler computation of the intensity ratio than methods that use sinusoidal patterns. A triangular intensity-ratio distribution is computed from two captured phase-shifted triangular-pattern images. An intensity ratio-to-height conversion algorithm, based on traditional phase-to-height conversion in the sinusoidal-pattern phase-shifting method, is used to reconstruct the object 3-D surface geometry. A smaller pitch of the triangular pattern resulted in higher measurement accuracy; however, an optimal pitch was found, below which intensity-ratio unwrapping failure may occur. Measurement error varied cyclically with depth and may partly be due to projector gamma nonlinearity and image defocus. The use of only two linear triangular patterns in the proposed method has the advantage of less processing than current methods that process three images, or methods that process more complex functions than the intensity ratio. This would be useful for high speed or real-time 3-D object-shape measurement. (c) 2007 Society of Photo-Optical Instrumentation Engineers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据