4.2 Article

Calibration of water distribution hydraulic models using a Bayesian-Type procedure

期刊

JOURNAL OF HYDRAULIC ENGINEERING
卷 133, 期 8, 页码 927-936

出版社

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)0733-9429(2007)133:8(927)

关键词

-

资金

  1. Engineering and Physical Sciences Research Council [GR/T26054/01] Funding Source: researchfish

向作者/读者索取更多资源

Estimating model parameters is a difficult, yet critical step in the use of water distribution system models. Most of the optimization-based approaches developed so far concentrate primarily on efficient and effective ways of obtaining optimal calibration parameter values. At the same time, very little effort has been made to determine the uncertainties (i.e., errors) associated with those values (and related model predictions). So far, this has typically been done using the first-order second moment (FOSM) method. Even though reasonably computationally efficient, the FOSM approach relies on several restrictive assumptions and requires computationally demanding calculation of derivatives. To overcome these limitations, the recently developed shuffled complex evolution metropolis (SCEM-UA) global optimization algorithm is linked to the Epanet2 hydraulic model and used to solve a least-squares-type calibration problem. The methodology is tested and verified on the Anytown literature case study. The main advantage of the SCEM-UA algorithm over existing approaches is that both calibration parameter values and associated uncertainties can be determined in a single optimization model run. In addition, no model linearity or parameter normality assumptions have to be made nor any derivatives calculated. The main drawback of the SCEM-UA methodology is that it could, potentially, be computationally demanding, although this is not envisaged as a major problem with current computers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据