4.8 Article

Targeted degradation of PSEUDO-RESPONSE REGULATOR5 by an SCFZTL complex regulates clock function and photomorphogenesis in Arabidopsis thaliana

期刊

PLANT CELL
卷 19, 期 8, 页码 2516-2530

出版社

AMER SOC PLANT BIOLOGISTS
DOI: 10.1105/tpc.107.053033

关键词

-

资金

  1. NIGMS NIH HHS [R01 GM044640, R56 GM044640-17, R56 GM044640, GM-44640] Funding Source: Medline

向作者/读者索取更多资源

Circadian clocks comprise several regulatory feedback loops that control gene transcription. However, recent evidence has shown that posttranslational mechanisms are also required for clock function. In Arabidopsis thaliana, members of the PSEUDO-RESPONSE REGULATOR (PRR) family were proposed to be components of the central oscillator. Using a PRR5-specific antibody, we characterized changes in PRR5 protein levels in relation to its mRNA levels under various circadian conditions. Under long-day conditions, PRR5 mRNA levels are undetectable at dusk but PRR5 protein levels remain maximal. Upon dark transition, however, PRR5 levels decrease rapidly, indicating dark-induced, posttranslational regulation. We demonstrated that the Pseudo-Receiver (PR) domain of PRR5 interacts directly with the F box protein ZEITLUPE (ZTL) in vitro and in vivo. Analyses of mutants and transgenic plants revealed an inverse correlation between PRR5 and ZTL levels, which depends on the PR domain. These results indicate that PRR5 is negatively regulated by ZTL, which likely mediates its ubiquitination and degradation. Phenotypic analyses of prr5 ztl double mutants showed that PRR5 is required for ZTL functions. ZTL contains a Light-Oxygen-Voltage domain, and its activity may be directly regulated by blue light. Consistent with this notion, we found that blue light stabilizes PRR5, although it does not alter ZTL levels. Together, our results show that ZTL targets PRR5 for degradation by 26S proteasomes in the circadian clock and in early photomorphogenesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据