4.6 Article

Electroplating synthesis and electrochemical properties of macroporous Sn-Cu alloy electrode for lithium-ion batteries

期刊

ELECTROCHIMICA ACTA
卷 52, 期 24, 页码 6741-6747

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2007.04.100

关键词

electroplating; colloidal crystal template; macroporous; tin-copper alloy; lithium-ion batteries

向作者/读者索取更多资源

Macroporous material of Sn-Cu alloy of different pore sizes designated as anode in lithium-ion batteries were fabricated through colloidal crystal template method. The structure and electrochemical properties of the macroporous Sn-Cu alloy electrodes were examined by using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and galvanostatic cycling. The results demonstrated that the electrodes of macroporous Sn-Cu alloy with pore size respectively of 180 and 500 nm can deliver reversible capacity of 350 and 270 mAh g(-1) up to 70th cycles of charge/discharge. The cycle performance of the macroporous Sn-Cu alloy of 180 nm in pore size is better than that of the macroporous Sn-Cu alloy with 500-nm-diameter pores. It has revealed that the porous structure of the macroporous Sn-Cu alloy material is of importance to strengthen mechanically the electrode and to reduce significantly the effect of volume expansion during cycling. (c) 2007 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据