4.7 Article

Improved chemical composition separation of ethylene-propylene random copolymers by high-temperature solvent gradient interaction chromatography

期刊

ANALYTICAL AND BIOANALYTICAL CHEMISTRY
卷 405, 期 26, 页码 8607-8614

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00216-013-7252-z

关键词

Ethylene-propylene random copolymer; EP rubber; Solvent gradient interaction chromatography; Chemical composition separation

资金

  1. SASOL, South Africa
  2. Novolen, Germany

向作者/读者索取更多资源

High-temperature solvent gradient interaction chromatography (HT-SGIC) is a fast and efficient fractionation technique for the chemical composition analysis of olefin copolymers. The separation of ethylene-propylene random copolymers (EPRs) was achieved on a graphitic stationary phase, Hypercarb, at 160 A degrees C by using linear solvent gradient elution from 1-decanol to 1,2,4-trichlorobenzene (TCB). In the present work, the solvent gradient profile was modified to improve the chromatographic separation of EPRs. With the aim to obtain a better resolution in separation, a slow increase in the volume fraction of TCB was applied. This allowed for a relatively large retention region for linear polyethylene (PE) chains on the column; thereby, a broader elution volume zone between the start of the gradient and the PE elution was achieved. The efficiency of this new gradient profile was demonstrated by analysing two fully amorphous EPR samples. Clear differences in the chemical composition of these EPR samples with similar ethylene contents have been proven by using this modified solvent gradient. The comprehensive chemical composition and microstructure analysis of the SGIC-separated fractions by FTIR revealed that ethylene/propylene (EP) copolymer chains were eluted according to their ethylene/propylene contents and E or P sequence lengths, even though they are distributed in a random manner. These results showed that the solvent composition is an important factor to affect the interactive adsorption or desorption behaviour of EP chains on Hypercarb. In this way, for the first time, the determination of the complex composition and chain structure of EPR samples was achieved within short analysis time, which is not possible till now using other fractionation techniques reported.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据