4.7 Article

Development of SPME on-fiber derivatization for the sampling of formaldehyde and other carbonyl compounds in indoor air

期刊

ANALYTICAL AND BIOANALYTICAL CHEMISTRY
卷 406, 期 1, 页码 317-328

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00216-013-7460-6

关键词

Formaldehyde; Carbonyl compounds; Solid-phase microextraction; On-fiber derivatization.; o-(2,3,4,5,6-Pentaflurobenzyl)hydroxylamine; Indoor air

向作者/读者索取更多资源

Solid-phase microextraction on-fiber derivatization applied to carbonyl compounds is known, but application to indoor air is poorly developed and the methods deserve to be complemented and optimized. In this work, two derivatization reagents, pentafluorophenylhydrazine and o-2,3,4,5,6-(pentaflurobenzyl)hydroxylamine (PFBHA), and three fiber coatings were tested in order to select the best combination. As Carboxen-based coatings were proven to induce the formation of by-products during the thermal desorption step, a polydimethylsiloxane-divinylbenzene fiber in association with PFBHA was finally chosen. The study of the derivatization kinetics showed that the reaction of PFBHA with carbonyl compounds was instantaneous, except for acetone. Analyses were performed by gas chromatography coupled with flame ionization detection and mass spectrometry. For 5 min fiber exposure, the limits of detection are below 0.5 mu g m(-3) in selected ion monitoring mode, the reproducibility was 15 % on average, and the linearity of the calibration curves was satisfactory. For on-site application, the influence of air humidity and the conditions in which the impregnated fibers were stored were studied. It is possible to store the fibers for 3 days before and for at least 2 days after sampling. The relative humidity of air was shown to have no influence on solid-phase microextraction sampling in the range from 0 to 70 %. For formaldehyde, the method was compared with sampling on 2,4-dinitrophenylhydrazine cartridges, and the first results showed good agreement. Finally, the method was applied to three different indoor environments to check its feasibility.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据