4.3 Article

Spike-rate adaptation and neuronal bursting in a mean-field model of brain activity

期刊

BIOLOGICAL CYBERNETICS
卷 97, 期 2, 页码 113-122

出版社

SPRINGER
DOI: 10.1007/s00422-007-0157-1

关键词

-

向作者/读者索取更多资源

Spike-rate adaptation is investigated within a mean-field model of brain activity. Two different mechanisms of negative feedback are considered; one involving modulation of the mean firing threshold, and the other, modulation of the mean synaptic strength. Adaptation to a constant stimulus is shown to take place for both mechanisms, and limit-cycle oscillations in the firing rate corresponding to bursts of neuronal activity are investigated. These oscillations are found to result from a Hopf bifurcation when the equilibrium lies between the local maximum and local minimum of a given nullcline. Oscillations with amplitudes significantly below the maximum firing rate are found over a narrow range of possible equilibriums.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据