4.7 Article

Gold nanoparticle assembly microfluidic reactor for efficient on-line proteolysis

期刊

MOLECULAR & CELLULAR PROTEOMICS
卷 6, 期 8, 页码 1428-1436

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/mcp.T600055-MCP200

关键词

-

向作者/读者索取更多资源

A microchip reactor coated with a gold nanoparticle network entrapping trypsin was designed for the efficient on-line proteolysis of low level proteins and complex extracts originating from mouse macrophages. The nanostructured surface coating was assembled via a layer-bylayer electrostatic binding of poly( diallyldimethylammonium chloride) and gold nanoparticles. The assembly process was monitored by UV-visible spectroscopy, atomic force microscopy, and quartz crystal microbalance. The controlled adsorption of trypsin was theoretically studied on the basis of the Langmuir isotherm model, and the fitted Gamma(max) and K values were estimated to be 1.2 x 10(-7) mol/m(2) and 4.1 x 10(5) M-1, respectively. An enzymatic kinetics assay confirmed that trypsin, which was entrapped in the biocompatible gold nanoparticle network with a high loading capacity, preserved its bioactivity. The maximum proteolytic rate of the adsorbed trypsin was 400 mM/(min center dot mu g). Trace amounts of proteins down to femtomole per analysis were digested using the microchip reactor, and the resulting tryptic products were identified by MALDI-TOF MS/MS. The protein mixtures extracted from the mouse macrophages were efficiently identified by online digestion and LC-ESI-MS/MS analysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据