4.7 Article

Disruption of palladin leads to defects in definitive erythropoiesis by interfering with erythroblastic island formation in mouse fetal liver

期刊

BLOOD
卷 110, 期 3, 页码 870-876

出版社

AMER SOC HEMATOLOGY
DOI: 10.1182/blood-2007-01-068528

关键词

-

向作者/读者索取更多资源

Palladin was originally found up-regulated with NB4 cell differentiation induced by alltrans retinoic acid. Disruption of palladin results in neural tube closure defects, liver herniation, and embryonic lethality. Here we further report that Palict(-/-) embryos exhibit a significant defect in erythropoiesis characterized by a dramatic reduction in definitive erythrocytes derived from fetal liver but not primitive erythrocytes from yolk sac. The reduction of erythrocytes is accompanied by increased apoptosis of erythroblasts and partial blockage of erythroid differentiation. However, colony-forming assay shows no differences between wild-type (wt) and mutant fetal liver or yolk sac in the number and size of colonies tested. In addition, Palld(-/-)fetal liver cells can reconstitute hematopoiesis in lethally irradiated mice. These data strongly suggest that deficient erythropoiesis in Palict(-/-) fetal liver is mainly due to a compromised erythropoletic microenvironment. As expected, erythroblastic island in Paild(-/-) fetal liver was found disorganized. Palict(-/-) fetal liver cells fail to form erythroblastic island in vitro. Interestingly, wt macrophages can form such units with either wit or mutant erythroblasts, while mutant macrophages lose their ability to bind wit or mutant erythroblasts. These data demonstrate that palladin is crucial for definitive erythropoiesis and erythroblastic island formation and, especially, required for normal function of macrophages in fetal liver.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据