4.3 Article

Protective effects of icariin against learning and memory deficits induced by aluminium in rats

期刊

出版社

WILEY
DOI: 10.1111/j.1440-1681.2007.04647.x

关键词

A beta(1-40); aluminium; icariin; learning and memory; malondialdehyde; superoxide dismutase

向作者/读者索取更多资源

1. The present study examined the protective effects of icariin against the learning and memory deficits in aluminium-treated rats and its potential mechanisms of action. 2. Qualified rats were treated with 1600 p.p.m. AlCl3 in drinking water for 8 months and the ability of spatial learning and memory was tested by the Morris water maze. In the place navigation test, aluminium administration significantly increased the mean escape latency and searching distance. In space probing test, aluminium markedly decreased the searching time and searching distance in the quadrant where the platform was originally located. All tests indicated deficits in rat spatial learning and memory induced by aluminium. Icariin treatment (60 and 120 mg/kg, by gavage for 3 months) dose-dependently protected against the development of aluminium-induced spatial learning and memory deficits. 3. To examine the mechanisms responsible for the protection afforded by icariin, the superoxide dismutase (SOD) activity and malondialdehyde (MDA) content in the hippocampus were assayed biochemically and the level of A beta(1-40) in the hippocampus was determined immunohistochemically. Icariin treatment significantly increased SOD activity and decreased MDA and A beta(1-40) content in the hippocampus of aluminium-intoxicated rats. 4. In conclusion, the present study demonstrates that icariin is effective in improving the spatial learning and memory of aluminium-intoxicated rats. The mechanisms responsible appear to be due, at least in part, to an increased anti-oxidant capacity and decreased lipid peroxidation and A beta(1-40) levels in the rat hippocampus.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据