4.5 Article

Subcooled flow boiling of R-134a in vertical channels of small diameter

期刊

INTERNATIONAL JOURNAL OF MULTIPHASE FLOW
卷 33, 期 8, 页码 822-832

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijmultiphaseflow.2007.02.002

关键词

heat transfer; R-134a; subcooled boiling; onset of nucleate boiling

向作者/读者索取更多资源

Subcooled flow boiling heat transfer for refrigerant R- 134a in vertical cylindrical tubes with 0.83, 1.22 and 1.70 turn internal diameter was experimentally investigated. The effects of the heat flux, q = 1-26 kW/m 2, mass flux, G = 300-700 kg /m(2) s, inlet subcooling, Delta T-sub,T-i = 5-15 degrees C, system pressure, P = 7.70-10.17 bar, and channel diameter, D, on the subcooled boiling heat transfer were explored in detail. The results are presented in the form of boiling curves and heat transfer coefficients. The boiling curves evidenced the existence of hysteresis when increasing the heat flux until the onset of nucleate boiling, ONB. The wall superheat at ONB was found to be essentially higher than that predicted with correlations for larger tubes. An increase of the mass flux leads, for early subcooled boiling, to an increase in the heat transfer coefficient. However, for fully developed subcooled boiling, increases of the mass flux only result in a slight improvement of the heat transfer. Higher inlet subcooling, higher system pressure and smaller channel diameter lead to better boiling heat transfer. Experimental heat transfer coefficients are compared to predictions from classical correlations available in the literature. None of them predicts the experimental data for all tested conditions. (c) 2007 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据