4.7 Article

Capillary electrophoretic separation of nanoparticles

期刊

ANALYTICAL AND BIOANALYTICAL CHEMISTRY
卷 399, 期 8, 页码 2831-2842

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00216-011-4650-y

关键词

Capillary electrophoresis; Micelles; Nanocrystals; Focusing; Oligomer

资金

  1. US Air Force Research Laboratory and Air Force Office of Scientific Research [FA9550-06-1-0365, N 204 142837]
  2. Ministry of Science and Higher Education (Poland)

向作者/读者索取更多资源

In the present work, CdSe nanocrystals (NCs) synthesized with a trioctylphosphine surface passivation layer were modified using amphiphilic molecules to form a surface bilayer capable of providing stable NCs aqueous solutions. Such modified nanocrystals were used as a test solute in order to analyze new electrophoretic phenomena, by applying a micellar plug as a separation tool for discriminating nanocrystals between micellar and micelle-free zones during electrophoresis. The distribution of NCs between both zones depended on the affinity of nanocrystals towards the micellar zone, and this relies on the kind of surface ligands attached to the NCs, as well as electrophoretic conditions applied. In this case, the NCs that migrated within a micellar zone can be focused using a preconcentration mechanism. By modifying electrophoretic conditions, NCs were forced to migrate outside the micellar zone in the form of a typical CZE peak. In this situation, a two-order difference in separation efficiencies, in terms of theoretical plates, was observed between focused NCs (N similar to 10(7)) and a typical CZE peak for NCs (N similar to 10(5)). By applying the amino-functionalized NCs the preconcentration of NCs, using a micellar plug, was examined, with the conclusion that preconcentration efficiency, in terms of the enhancement factor for peak height (SEF(height)) can be, at least 20. The distribution effect was applied to separate CdSe/ZnS NCs encapsulated in silica, as well as surface-modified with DNA, which allows the estimation of the yield of conjugation of biologically active molecules to a particle surface.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据