4.6 Article

Elevated core and muscle temperature to levels comparable to exercise do not increase heat shock protein content of skeletal muscle of physically active men

期刊

ACTA PHYSIOLOGICA
卷 190, 期 4, 页码 319-327

出版社

BLACKWELL PUBLISHING
DOI: 10.1111/j.1748-1716.2007.01711.x

关键词

chaperones; heat shock proteins; hyperthermia; oxidative stress

资金

  1. Medical Research Council [G0400911] Funding Source: Medline
  2. MRC [G0400911] Funding Source: UKRI
  3. Medical Research Council [G0400911] Funding Source: researchfish

向作者/读者索取更多资源

Aim: Exercise-associated hyperthermia is routinely cited as the signal responsible for inducing an increased production of heat shock proteins (HSPs) following exercise. This hypothesis, however, has not been tested in human skeletal muscle. The aim of the present study was to therefore investigate the role of increased muscle and core temperature in contributing to the exercise-induced production of the major HSP families in human skeletal muscle. Methods: Seven physically active males underwent a passive heating protocol of 1 h duration during which the temperature of the core and vastus lateralis muscle were increased to similar levels to those typically occurring during moderately demanding aerobic exercise protocols. One limb was immersed in a tank containing water maintained at approximately 45 degrees C whilst the contra-lateral limb remained outside the tank and was not exposed to heat stress. Muscle biopsies were obtained from the vastus lateralis of both legs immediately prior to and at 48 h and 7 days post-heating. Results: The heating protocol induced significant increases (P < 0.05) in rectal (1.5 +/- 0.2 degrees C) and muscle temperature of the heated leg (3.6 +/- 0.5 degrees C). Muscle temperature of the non-heated limb showed no significant change (P > 0.05) following heating (pre: 36.1 +/- 0.5, post: 35.7 +/- 0.2 degrees C). Heating failed to induce a significant increase (P > 0.05) in muscle content of HSP70, HSC70, HSP60, HSP27, alpha B-crystallin, MnSOD protein content or in the activity of superoxide dismutase and catalase. Conclusions: These data demonstrate that increases in both systemic and local muscle temperature per se do not appear to mediate the exercise-induced production of HSPs in human skeletal muscle and suggest that non-heat stress factors associated with contractile activity are of more importance in mediating this response.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据