4.7 Article

Highly specific capture and direct MALDI-MS analysis of phosphorylated peptides using novel multifunctional chitosan-GMA-IDA-Fe (III) nanosphere

期刊

ANALYTICAL AND BIOANALYTICAL CHEMISTRY
卷 401, 期 4, 页码 1251-1261

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00216-011-5186-x

关键词

Chitosan-GMA-IDA-Fe (III); Phosphopeptide enrichment; Nanosphere; MALDI-MS; Ferrum ion; Immobilized metal ion affinity chromatography

资金

  1. 985 project of China

向作者/读者索取更多资源

In this study, we describe a method for highly specific enrichment of phosphopeptides with multifunctional chitosan-glycidyl methacrylate (GMA)-iminodiacetic acid (IDA)-Fe (III) nanospheres for direct analysis by matrix-assisted laser desorption-ionization mass spectrometry (MALDI-MS). This is the first time that chitosan has been used to create nanospheres support material for selective enrichment of phosphopeptides by modification with GMA, derivatization with IDA, and loading with Fe (III) ions. Chitosan-GMA-IDA-Fe (III) nanospheres with a diameter of 20 to 100 nm have multifunctional chemical moieties which confer unique properties, good dispersibility in highly acidic binding buffers, as well as good biocompatibility and chemical stability which improves their specific interaction with phosphopeptides using various types of acid binding buffers. The process of enrichment is very simple, quick, efficient, and specific. Its high specificity and efficiency for purification of phosphopeptides is reflected in the very low and substoichiometric amounts of phosphopeptides which can be detected, in quantities as low as 1:3,000 M ratios. Compared with other state-of the-art technologies such as the use of conventional Fe3+-IMAC and TiO2, these chitosan nanosphere techniques show superior specificity and sensitivity. Moreover, the resultant chitosan-GMA-IDA-Fe3+ nanosphere-absorbed phosphopeptides can be either directly analyzed by MALDI-TOF MS analysis or eluted and further analyzed by nano-LC-MS/MS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据