4.5 Article

Lipid peroxidation in brain during aging in the senescence-accelerated mouse (SAM)

期刊

NEUROBIOLOGY OF AGING
卷 28, 期 8, 页码 1170-1178

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.neurobiolaging.2006.05.033

关键词

aging; amygdala; brain; alpha-tocopherol; hippocampus; phospholipids; polyunsaturated fatty acids; senescence acceleration

向作者/读者索取更多资源

Accumulation of toxic amyloid-beta (A beta)-peptide is suggested to cause oxidative stress in Alzheimer's disease (AD) brain, and decrease the content of polyunsaturated fatty acids (PUFA) in neuronal membrane lipids. The senescence accelerated prone mice (SAMPS) have age-related increases in the level of hippocampal A beta-peptide, learning and memory deficits, and a shorter lifespan than their controls. The effects of age-related oxidative damage on PUFA content in membrane phospholipids (PL), and alpha-tocopherol concentration were investigated in hippocampus and amygdala of 2-, 4-, 12-, and 18-month-old SAMP8 mice. In comparison to the younger SAMP8 mice, the hippocampus of the 12-month-old mice contained lower proportions of docosahexaenoic acid (DHA) in phosphatidylserine (PS) and phosphatidylinositol (PI), and higher proportions of arachidonic acid (AA) in PS. Their amygdala contained a lower proportion of AA in phosphatidylcholine (PC). In the hippocampus of the oldest age group, the proportions of DHA in PS, and AA in PC and PI were higher than in the younger age groups. At 2 months of age, the amygdala contained a higher concentration of (x-tocopherol than the hippocampus, but this difference between the two brain regions was lost with aging. The oldest age group contained the highest concentration of alpha-tocopherol, indicating a protection against oxidative damage of PUFA in brain membrane phospholipids. (c) 2006 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据