4.8 Article

Colossal magnetocapacitance and scale-invariant dielectric response in phase-separated manganites

期刊

NATURE PHYSICS
卷 3, 期 8, 页码 551-555

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nphys626

关键词

-

向作者/读者索取更多资源

A full characterization of phase separation and the competition between phases is necessary for a comprehensive understanding of strongly correlated electron materials, such as under-doped high-temperature superconductors, complex oxide heterojunctions, spinels, multiferroics, rare-earth ferroelectric manganites and mixed-valence manganites in which phase competition is the dominant mechanism governing the insulator-metal (IM) transition and the associated colossal magnetoresistance effect. Thin films of strongly correlated electron materials are often grown epitaxially on planar substrates and typically have anisotropic properties that are usually not captured by edge-mounted four-terminal electrical measurements, which are primarily sensitive to inplane conduction paths. We present an experimental study of anisotropic transport in phase-separated manganite thin films by using an unconventional arrangement of contact electrodes that enables the simultaneous determination of colossal magnetoresistance associated with d.c. transport parallel to the film substrate and colossal magnetocapacitance associated with a. c. transport in the perpendicular direction. We distinguish two distinct direction-dependent IM transitions and find a dielectric response that collapses onto a scale-invariant dependence over a large range of frequency, temperature and magnetic field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据