4.7 Article

Rapid determination of urinary di(2-ethylhexyl) phthalate metabolites based on liquid chromatography/tandem mass spectrometry as a marker for blood transfusion in sports drug testing

期刊

ANALYTICAL AND BIOANALYTICAL CHEMISTRY
卷 401, 期 2, 页码 517-528

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00216-010-4589-4

关键词

DEHP metabolites; Sport drug testing; Urine; Liquid chromatography mass spectrometry; Blood transfusion

资金

  1. Antidoping Switzerland (Bern, Switzerland)
  2. Eotvos Lorand University (Budapest, Hungary)
  3. Federal Ministry of the Interior of the Federal Republic of Germany
  4. Manfred Donike Institute for Doping Analysis e.V.

向作者/读者索取更多资源

Methods of blood doping such as autologous and homologous blood transfusion are one of the main challenging doping practices in competitive sport. Whereas homologous blood transfusion is detectable via minor blood antigens, the detection of autologous blood transfusion is still not feasible. A promising approach to indicate homologous or autologous blood transfusion is the quantification of increased urinary levels of di(2-ethylhexyl) phthalate (DEHP) metabolites found after blood transfusion. The commonly used plasticizer for flexible PVC products, such as blood bags, is DEHP which is known to diffuse into the stored blood. Therefore, a straight forward, rapid and reliable assay is presented for the quantification of the main metabolites mono(2-ethyl-5-oxohexyl) phthalate, mono(2-ethyl-5-hydroxyhexyl) phthalate and mono(2-ethylhexyl) phthalate that can easily be implemented into existing multi-target methods used for sports drug testing. Quantification of the DEHP metabolites was accomplished after enzymatic hydrolysis of urinary glucuronide conjugates and direct injection using isotope-dilution liquid chromatography/tandem mass spectrometry. The method was fully validated for quantitative purposes considering the parameters specificity, linearity (1-250 ng/mL), inter- (2.4%-4.3%) and intra-day precision (0.7%-6.1%), accuracy (85%-105%), limit of detection (0.2-0.3 ng/mL), limit of quantification (1 ng/mL), stability and ion suppression effects. Urinary DEHP metabolites were measured in a control group without special exposure to DEHP (n = 100), in hospitalized patients receiving blood transfusion (n = 10), and in athletes (n = 468) being subject of routine doping controls. The investigation demonstrates that significantly increased levels of secondary DEHP metabolites were found in urine samples of transfused patients, strongly indicating blood transfusion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据