4.4 Article

Phragmites australis and silica cycling in tidal wetlands

期刊

AQUATIC BOTANY
卷 87, 期 2, 页码 134-140

出版社

ELSEVIER
DOI: 10.1016/j.aquabot.2007.05.002

关键词

biogenic silica dissolution; Phragmites australis; tidal marsh ecology

向作者/读者索取更多资源

Tidal marshes have recently been shown to be important biogenic Si recycling surfaces at the land-sea interface. The role of vegetation in this recycling process has not yet been quantified. In situ and ex situ decomposition experiments were conducted with Phragmites australis stems. In a freshwater tidal marsh, litterbags were incubated at different elevations and during both winter and summer. Biogenic Si (BSi) dissolution followed a double exponential decay model in the litterbags (from ca. 60 to 15 mg g(-1) after 133 days), irrespective of season. Si was removed much faster from the incubated plant material compared to N and C, resulting in steadily decreasing Si/N and Si/C ratios. Ex situ, decomposition experiments were conducted in estuarine water, treated with a broad-spectrum antibiotic, and compared to results from untreated incubations. The bacteria] influence on the dissolution of dissolved Si (DSi) from R australis stems was negligible. Although the rate constant for dissolved Si dissolution decreased from 0.004 to 0.003 h(-1), the eventual amount of BSi dissolved and saturation concentration in the incubation environment were similar in both treatments. P. australis contributes to and enhances dissolved Si recycling capacity of tidal marshes: in a reed-dominated small freshwater tidal marsh, more than 40% of DSi export was attributable to reed decomposition. As the relation between tidal marsh surface and secondary production in estuaries has been linked to marsh Si cycling capacity, this provides new insight in the ecological value of the common reed. (C) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据