4.7 Article

Dual subcellular roles for LIS1 and dynein in radial neuronal migration in live brain tissue

期刊

NATURE NEUROSCIENCE
卷 10, 期 8, 页码 970-979

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nn1934

关键词

-

资金

  1. NICHD NIH HHS [HD40182] Funding Source: Medline
  2. NIGMS NIH HHS [GM47434] Funding Source: Medline

向作者/读者索取更多资源

During brain development, neural precursor cells migrate along radial glial fibers to populate the neocortex. RNA interference (RNAi) of the lissencephaly gene LIS1 (also known as PAFAH1b1) inhibits somal movement but not process extension of neural precursors in live brain slices. Here we report imaging of the subcellular events accompanying neural precursor migration and the effects of LIS1, cytoplasmic dynein and myosin II inhibition. Centrosomes move continuously and often far in advance of nuclei, which show extreme saltatory behavior. LIS1 and dynein RNAi inhibit centrosomal and nuclear movement independently, whereas myosin II inhibition blocks only nuclear translocation. Imaging of the microtubule end-binding protein 3 (EB3) reveals a centrosome-centered array of microtubules in live neural precursors under all conditions examined. Dynein is concentrated both at a swelling in the leading process reported to initiate each migratory cycle and in the soma. Thus, dynein pulls on the microtubule network from the swelling. The nucleus is transported along the trailing microtubules by dynein assisted by myosin II.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据