4.7 Article

Simulations and density functional calculations of surface forces in the presence of semiflexible polymers

期刊

PHYSICAL REVIEW E
卷 76, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.76.021801

关键词

-

向作者/读者索取更多资源

We simulate interactions between adsorbing and nonadsorbing surfaces immersed in solutions containing monodisperse semiflexible chains. Apart from the nature of the surfaces, we investigate responses to changes of the intrinsic chain stiffness, the degree of polymerization, and the bulk concentration. Our simulations display a sufficient accuracy and precision to reveal free-energy barriers that are small on a typical scale of surface force simulations, but still of the same order as the expected van der Waals interactions. Two different approaches have been tested: grand canonical simulations, improved by configurational-biased techniques, and a perturbation method utilizing the isotension ensemble. We find the former to be preferable when the surfaces are nonadsorbing, whereas the isotension approach is superior for calculations of interactions between adsorbing surfaces, especially if the polymers are stiff. We also compare our simulation results with predictions from several versions of polymer density functional theory. We find that a crucial aspect of these theories, in quantitative terms, is that they recognize that end monomers exclude more volume to the surrounding than inner ones do. Those theories provide satisfactorily accurate predictions, particularly when the surfaces are nonadsorbing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据