4.6 Article

Electronic structure of the thermoelectric materials Bi2Te3 and Sb2Te3 from first-principles calculations

期刊

PHYSICAL REVIEW B
卷 76, 期 7, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.76.075201

关键词

-

向作者/读者索取更多资源

The electronic structures of Bi2Te3 and Sb2Te3 crystals were calculated using the first-principles full-potential linearized augmented plane-wave method. We studied not only the unrelaxed crystals, which have the experimental lattice parameters and scaled atom coordinates, but also the relaxed crystals, which have the lattice parameters and scaled atom coordinates determined from theoretical structure optimizations. We found that Bi2Te3 has six highest valence-band edges and six lowest conduction-band edges regardless of relaxations. However, by varying structural parameters Sb2Te3 may undergo an electronic topological transition that the number of valence (and conduction) band edges changes between 6 and 12. Moreover, we presented the location of the band edges and the effective mass tenor parameters for electrons and holes associated with those band edges. Furthermore, we discussed the relation of the calculated electronic structures of the two crystals with the electrical properties of Bi2Te3/Sb2Te3 superlattices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据