4.5 Article

The tyrosine degradation gene hppD is transcriptionally activated by HpdA and HpdR in Streptomyces coelicolor, while hpdA is negatively autoregulated and repressed repressed by HpdR

期刊

MOLECULAR MICROBIOLOGY
卷 65, 期 4, 页码 1064-1077

出版社

BLACKWELL PUBLISHING
DOI: 10.1111/j.1365-2958.2007.05848.x

关键词

-

向作者/读者索取更多资源

Streptomyces coelicolor produces a brown pigment on nutrient-limited agar medium (Tyr-PM) using L-tyrosine as the sole nitrogen and carbon source. The pigment production is associated with the second step Of L-tyrosine catabolism catalysed by 4-hydroxyphenylpyruvate dioxygenase (HppD), which converts 4-hydroxyphenylpyruvate (4HPP) to 2 5-dihydroxyphenylacetate (homogentisate) to provide the carbon and energy substrates for the growth of S. coelicolor on Tyr-PM. An hppD mutant did not produce brown pigment, and its normal growth was impaired on Tyr-PM. hpdA and hpdR, located close to hppD, were identified as activator and repressor genes for hppD transcription in the presence of tyrosine. hpdA, divergently transcribed from hppD, is negatively autoregulated in the absence of tyrosine, whereas it is repressed by both its own protein and HpdR in the presence of tyrosine. Electrophoretic mobility shift assays and footprinting experiments showed that HpdA and HpdR each bind to an overlapping region spanning the promoters of both hppD and hpdA, and that 4HPP, instead of tyrosine, is the specific ligand modulating the binding patterns and footprints of HpdA and HpdR on the hppD-hpdA promoter region. These results suggested that the transcription of hppD is subject to coarse and fine control by a complex regulatory system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据