4.6 Article

Hydrogen absorption properties of metal-ethylene complexes

期刊

PHYSICAL REVIEW B
卷 76, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.76.085434

关键词

-

向作者/读者索取更多资源

Recently, we have predicted [Phys. Rev. Lett. 97, 226102 (2006)] that a single ethylene molecule can form stable complexes with light transition metals (TMs) such as Ti and the resulting TMn-ethylene complex can absorb up to similar to 12 and 14 wt % hydrogen for n=1 and 2, respectively. Here we extend this study to include a large number of other metals and different isomeric structures. We obtained interesting results for light metals such as Li. The ethylene molecule is able to complex with two Li atoms with a binding energy of 0.7 eV/Li which then binds up to two H-2 molecules per Li with a binding energy of 0.24 eV/H-2 and absorption capacity of 16 wt %, a record high value reported so far. The stability of the proposed metal-ethylene complexes was tested by extensive calculations such as normal-mode analysis, finite temperature first-principles molecular-dynamics (MD) simulations, and reaction path calculations. The phonon and MD simulations indicate that the proposed structures are stable up to 500 K. The reaction path calculations indicate about 1 eV activation barrier for the TM2-ethylene complex to transform into a possible lower energy configuration where the ethylene molecule is dissociated. Importantly, no matter which isometric configuration the TM2-ethylene complex possesses, the TM atoms are able to bind multiple hydrogen molecules with suitable binding energy for room-temperature storage. These results suggest that co-deposition of ethylene with a suitable precursor of TM or Li into nanopores of light-weight host materials may be a very promising route to discovering new materials with high-capacity hydrogen absorption properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据