4.6 Article Proceedings Paper

Influence of the methacrylate monolith structure on genomic DNA mechanical degradation, enzymes activity and clogging

期刊

JOURNAL OF CHROMATOGRAPHY A
卷 1160, 期 1-2, 页码 176-183

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.chroma.2007.05.034

关键词

methacrylate monolith; convective interaction media (CIM); column clogging; pore size; DNA; permeability; enzyme biological activity

向作者/读者索取更多资源

The chromatography of mechanically sensitive macromolecules still represents a challenge. While larger pores can reduce the mechanically induced cleavage of large macromolecules and column clogging, the column performance inevitably decreases. To investigate the effect of pore size on the mechanical degradation of DNA, column permeability and enzyme biological activity, methacrylate monoliths with different pore sizes were tested. Monolith with a 143 nm pore radius mechanically damaged the DNA and was clogged at flow rates above 0.5 ml min(-1) (26 cm h(-1)). For monoliths with a pore radius of 634 nm and 2900 nm, no mechanical degradation of DNA was observed up to 5 ml min(-1) (265 cm h(-1)) above which the HPLC itself became the main source of damage. A decrease of a permeability appeared at flow rate 1.8 ml min(-1) (95 cm h(-1)) and 2.3 ml min(-1) (122 cm h(-1)), respectively. The effect of the pore size on enzyme biological activity was tested with immobilized DNase and trypsin on all three monoliths. Although the highest amount of enzyme was immobilized on the monolith with the smallest pores, monolith with the pore radius 634 nm exhibited the highest DNase biological activity probably due to restricted access for DNA molecules into the small pores. Interestingly, specific biological activity was increasing with a pore size decrease. This was attributed to higher number of contacts between a substrate and immobilized ligand. (c) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据