4.8 Article

A miR-24 microRNA binding-site polymorphism in dihydrofolate reductase gene leads to methotrexate resistance

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0706217104

关键词

3 ' UTR; drug resistance; single nucleotide polymorphism; translational regulation; mRNA stability

资金

  1. NCI NIH HHS [CA0810] Funding Source: Medline

向作者/读者索取更多资源

MicroRNAs are predicted to regulate approximate to 30% of all human genes by targeting sequences in their 3' UTR. Polymorphisms in 3' UTR of several genes have been reported to affect gene expression, but the mechanism is not fully understood. Here, we demonstrate that 829C -> T, a naturally occurring SNP, near the miR-24 binding site in the 3' UTR of human dihydrofolate reductase (DHFR) affects DHFR expression by interfering with miR-24 function, resulting in DHFR overexpression and methotrexate resistance. miR-24 has a conserved binding site in DHFR 3' UTR. DHFR with WT and 3' UTR containing the 829C -> T mutation were expressed in DG44 cells that lack DHFR. Overexpression of miR-24 in cells with WT DHFR resulted in down-regulation of DHFR protein, whereas no effect on DHFR protein expression was observed in the mutant 3' UTR expressing cells. Inhibition of endogenous miR-24 with a specific inhibitor led to up-regulation of DHFR in WT and not in mutant cells. Cells with the mutant 3' UTR had a 2-fold increase in DHFR mRNA half-life, expressed higher DHFR mRNA and DHFR protein, and were 4-fold more resistant to methotrexate as compared with WT cells. SNP-829C -> T, therefore, leads to a decrease in microRNA binding leading to overexpression of its target and results in resistance to methotrexate. We demonstrate that a naturally occurring miRSNP (a SNP located at or near a microRNA binding site in 3' UTR of the target gene or in a microRNA) is associated with enzyme overproduction and drug resistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据