4.7 Article

Electrokinetically-driven flow mixing in microchannels with wavy surface

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 312, 期 2, 页码 470-480

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2007.03.033

关键词

electrokmetically-driven flow; micromixing; microchannel

向作者/读者索取更多资源

This paper investigates the mixing characteristics of electrokinetically-driven flow in microchannels with different wavy surface configurations. Numerical simulations are performed to analyze the influence of the wave amplitude and the length of the wavy section on the mixing efficiency within the microchannel. Typically, straight channels have a poor mixing performance because the fluid flow is restricted to the low Reynolds number regime, and hence mixing takes place primarily as a result of diffusion effects. However, the wavy surfaces employed in the current microchannels increase the interfacial contact area between the two species in the microchannel and therefore improve the mixing efficiency. The mixing performance is further enhanced by the application of a heterogeneous charge pattern on the wavy surfaces. The numerical results show that the heterogeneous charge pattern generates flow circulations near the microchannel walls. These circulations are shown to provide an effective enhancement in the mixing performance. Overall, the present results show that the mixing performance is improved by increasing the magnitude of the heterogeneous surface zeta potential upon the wavy surface or by increasing the wave amplitude or the length of the wavy section in the microchannel. (c) 2007 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据