4.7 Article

Emulsification in turbulent flow - 1. Mean and maximum drop diameters in inertial and viscous regimes

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 312, 期 2, 页码 363-380

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2007.03.059

关键词

emulsification in turbulent flow; drop breakup; drop-size distribution; emulsification in viscous regime; Kolmogorov theory of emulsification

向作者/读者索取更多资源

Systematic experimental study of the effects of several factors on the mean and maximum drop sizes during emulsification in turbulent flow is performed. These factors include: (1) rate of energy dissipation, epsilon; (2) interfacial tension, sigma; (3) viscosity of the oil phase, eta D; (4) viscosity of the aqueous phase, eta C; and (5) oil volume fraction, Phi. The emulsions are prepared by using the so-called narrow-gap homogenizer working in turbulent regime of emulsification. The experiments are performed at high surfactant concentration to avoid the effect of drop-drop coalescence. For emulsions prepared in the inertial turbulent regime, the mean and the maximum drop sizes increase with the increase of eta(D) and sigma, and with the decrease of epsilon. In contrast, Phi and eta(C) affect only slightly the mean and the maximum drop sizes in this regime of emulsification. These results are described very well by a theoretical expression proposed by Davies [Chem. Eng. Sci. 40 (1985) 839], which accounts for the effects of the drop capillary pressure and the viscous dissipation inside the breaking drops. The polydispersity of the emulsions prepared in the inertial regime of emulsification does not depend significantly on sigma and epsilon. However, the emulsion polydispersity increases significantly with the increase Of Oil viscosity, eta(D). The experiments showed also that the inertial turbulent regime is inappropriate for emulsification of oils with viscosity above ca. 500 mPas, if drops of micrometer size are to be obtained. The transition from inertial to viscous turbulent regime of emulsification was accomplished by a moderate increase of the viscosity of the aqueous phase (above 5 mPa s in the studied systems) and/or by increase of the oil volume fraction, Phi > 0.6. Remarkably, emulsions with drops of micrometer size are easily formed in the viscous turbulent regime of emulsification, even for oils with viscosity as high as 10,000 mPa s. In this regime, the mean drop size rapidly decreases with the increase of eta(C) and Phi (along with the effects of epsilon, sigma, and eta(D), which are qualitatively similar in the inertial and viscous regimes of emulsification). The experimental results are theoretically described and discussed by using expressions from the literature and their modifications (proposed in the current study). (c) 2007 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据