4.6 Article

Infrared spectroscopy of cationized lysine and ε-N-methyllysine in the gas phase:: Effects of alkali-metal ion size and proton affinity on zwitterion stability

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 111, 期 32, 页码 7753-7760

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp071902q

关键词

-

向作者/读者索取更多资源

The gas-phase structures of protonated and alkali-metal-cationized lysine (Lys) and epsilon-N-methyllysine (Lys(Me)) are investigated using infrared multiple photon dissociation (IRMPD) spectroscopy utilizing light generated by a free electron laser, in conjunction with ab initio calculations. IRMPD spectra of Lys center dot Li+ and Lys center dot Na+ are similar, but the spectrum for Lys center dot K+ is different, indicating that the structure of lysine in these complexes depends on the metal ion size. The carbonyl stretch of a carboxylic acid group is clearly observed in each of these spectra, indicating that lysine is nonzwitterionic in these complexes. A detailed comparison of these spectra to those calculated for candidate low-energy structures indicates that the bonding motif for the metal ion changes from tricoordinated for Li and Na to dicoordinated for K, clearly revealing the increased importance of hydrogen-bonding relative to metal ion solvation with increasing metal ion size. Spectra for Lys(Me)center dot M+ show that Lys(Me), an analogue of lysine whose side chain contains a secondary amine, is nonzwitterionic with Li and zwitterionic with K and both forms are present for Na. The proton affinity of Lys(Me) is 16 kJ/mol higher than that of Lys; the higher proton affinity of a secondary amine can result in its preferential protonation and stabilization of the zwitterionic form.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据