4.7 Article

Large-scale prediction of drug-target interactions using protein sequences and drug topological structures

期刊

ANALYTICA CHIMICA ACTA
卷 752, 期 -, 页码 1-10

出版社

ELSEVIER
DOI: 10.1016/j.aca.2012.09.021

关键词

Drug-target interactions; Chemoinformatics; Molecular fingerprint; Support vector machines; Extended structure-activity relationship

资金

  1. National Nature Foundation Committee of PR China [21075138, 21275164]
  2. Fundamental Research Funds for the Central South University [2010QZZD010]

向作者/读者索取更多资源

The identification of interactions between drugs and target proteins plays a key role in the process of genomic drug discovery. It is both consuming and costly to determine drug-target interactions by experiments alone. Therefore, there is an urgent need to develop new in silico prediction approaches capable of identifying these potential drug-target interactions in a timely manner. In this article, we aim at extending current Structure-activity relationship (SAR) methodology to fulfill such requirements. In some sense, a drug-target interaction can be regarded as an event or property triggered by many influence factors from drugs and target proteins. Thus, each interaction pair can be represented theoretically by using these factors which are based on the structural and physicochemical properties simultaneously from drugs and proteins. To realize this, drug molecules are encoded with MACCS substructure fingerings representing existence of certain functional groups or fragments; and proteins are encoded with some biochemical and physicochemical properties. Four classes of drug-target interaction networks in humans involving enzymes, ion channels, G-protein-coupled receptors (GPCRs) and nuclear receptors, are independently used for establishing predictive models with support vector machines (SVMs). The SVM models gave prediction accuracy of 90.31%, 88.91%. 84.68% and 83.74% for four datasets, respectively. In conclusion, the results demonstrate the ability of our proposed method to predict the drug-target interactions, and show a general compatibility between the new scheme and current SAR methodology. They open the way to a host of new investigations on the diversity analysis and prediction of drug-target interactions. (c) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据