4.7 Article

Rapid isolation of plutonium in environmental solid samples using sequential injection anion exchange chromatography followed by detection with inductively coupled plasma mass spectrometry

期刊

ANALYTICA CHIMICA ACTA
卷 685, 期 2, 页码 111-119

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.aca.2010.10.029

关键词

Plutonium; Automation; Environmental samples; Anion exchange chromatography; Sequential injection; Inductively coupled plasma mass spectrometry

资金

  1. Spanish Ministry of Science and Innovation [CMT 2010-17214]

向作者/读者索取更多资源

This paper reports an automated analytical method for rapid determination of plutonium isotopes ((239)Pu and (240)Pu) in environmental solid extracts. Anion exchange chromatographic columns were incorporated in a sequential injection (SI) system to undertake the automated separation of plutonium from matrix and interfering elements. The analytical results most distinctly demonstrated that the crosslinkage of the anion exchanger is a key parameter controlling the separation efficiency. AG 1-x4 type resin was selected as the most suitable sorbent material for analyte separation. Investigation of column size effect upon the separation efficiency revealed that small-sized (2 mL) columns sufficed to handle up to 50 g of environmental soil samples. Under the optimum conditions, chemical yields of plutonium exceeded 90% and the decontamination factors for uranium, thorium and lead ranged from 10(3) to 10(4). The determination of plutonium isotopes in three standard/certified reference materials (IAEA-375 soil, IAEA-135 sediment and NIST-4359 seaweed) and two reference samples (Irish Sea sediment and Danish soil) revealed a good agreement with reference/certified values. The SI column-separation method is straightforward and less labor intensive as compared with batch-wise anion exchange chromatographic procedures. Besides, the automated method features low consumption of ion-exchanger and reagents for column washing and elution, with the consequent decrease in the generation of acidic waste, thus bearing green chemical credentials. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据