4.5 Article

Gramicidin conducting dimers in lipid bilayers are stabilized by single-file ionic flux along them

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 111, 期 33, 页码 9814-9820

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp072051p

关键词

-

向作者/读者索取更多资源

Gramicidin D was incorporated in a biomimetic membrane consisting of a lipid bilayer tethered to a mercury electrode via a hydrophilic spacer, and its behavior was investigated in aqueous 0.1 M KCl by potential-step chronocoulometry and electrochemical impedance spectroscopy. The impedance spectra, recorded from 0.1 to 1 x 10(5) Hz over a potential range of 0.7 V, were fitted to a series of RC meshes, which were related to the different substructural elements of the biomimetic membrane. These impedance spectra were compared with those obtained by incorporating valinomycin, under otherwise identical conditions. The potential dependence of the stationary currents reported on bilayer lipid membranes by Bamberg and Lauger (Bamberg, E.; Lauger, P. J. Membrane Biol. 1973, 11, 177-194) as well as those extracted from potential-step chronocoulometric measurements was interpreted by relating the increase in gramicidin dimerization to a progressive increase in single-file K+ flux along the dimeric channels. An analogous approach was adopted in explaining the difference between the impedance spectra obtained with gramicidin D and those obtained with valinomycin. It is concluded that gramicidin has a low tendency to form dimers in the absence of ionic flux.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据