4.8 Article

Astrocytes potentiate transmitter release at single hippocampal synapses

期刊

SCIENCE
卷 317, 期 5841, 页码 1083-1086

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.1144640

关键词

-

向作者/读者索取更多资源

Astrocytes play active roles in brain physiology. They respond to neurotransmitters and modulate neuronal excitability and synaptic function. However, the influence of astrocytes on synaptic transmission and plasticity at the single synapse level is unknown. Ca2+ elevation in astrocytes transiently increased the probability of transmitter release at hippocampal area CA3-CA1 synapses, without affecting the amplitude of synaptic events. This form of short-term plasticity was due to the release of glutamate from astrocytes, a process that depended on Ca2+ and soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein and that activated metabotropic glutamate receptors (mGluRs). The transient potentiation of transmitter release became persistent when the astrocytic signal was temporally coincident with postsynaptic depolarization. This persistent plasticity was mGluR-mediated but N-methyl-D-aspartate receptorin-dependent. These results indicate that astrocytes are actively involved in the transfer and storage of synaptic information.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据