4.8 Article

Self-assembled light-harvesting systems: Ru(II) complexes assembled about Rh-Rh cores

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 129, 期 34, 页码 10479-10488

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja072153t

关键词

-

向作者/读者索取更多资源

Ru(II) polypyridine species have been assembled about dirhodium(II, II) tetracarboxylate cores. The complexes prepared have general formulas [{(terpy)Ru(La)}(n){Rh-2(CH3COO)(4-n)(CH3CN)(2)}](2n+) (a-type compounds: terpy = 2,2':6',2' '-terpyridine; La = 4'-(p-carboxyphenyl)-2,2':6',2' '-terpyridine; n = 1, 1a; n = 2, cis-2a and trans-2a-cis and trans refer to the arrangement of the Ru(II) species around the dirhodium core; n = 3, 3a), [{(Lb)Ru(La)}(n){Rh-2(CH3COO)(4-n)(CH3CN)(2)}](2n+) (b-type compounds: Lb = 6-phenyl-2,4-di(2-pyridyl)-s-triazine; n = 1, 1b; n = 2, an inseparable mixture of cis-2b and trans-2b; n = 3, 3b; n = 4, 4b), and [{(terpy)Ru(Lc)}{Rh-2(CH3COO)(3)(CH3CN)(2)}](2+) (1c; Lc = 6-(p-carboxyphenyl)-2,4-di(2-pyridyl)-s-triazine). As model species, also the mononuclear [(terpy)Ru(La)](2+) (5a), [(La)Ru(Lb)](2+) (5b), and [(terpy)Ru(Lc)](2+) (5c) have been prepared. All of the complexes have been characterized by several techniques, including NMR and mass spectra, and the stability of the various species is discussed. The absorption spectra of all of the compounds are dominated by the Ru(II) polypyridine moieties, showing intense ligand-centered (LC) bands in the UV region and intense metal-to-ligand charge-transfer (MLCT) bands in the visible. The compounds exhibit several metal-centered oxidation and ligand-centered reduction processes, which have been assigned to specific subunits. Both absorption and redox data indicate a supramolecular nature of the assembled systems. Efficient energy transfer from the MLCT triplet state of the Ru-based components to the lowest-energy excited state of the dirhodium core takes place for the a-type compounds at 298 K in acetonitrile solution, whereas such a process is inefficient for the b-type and c-type species, which exhibit the typical MLCT emission. At 77 K in butyronitrile matrix, Ru-to-Rh-2 energy transfer is partly efficient for both the a-type and the b-type compounds and is inefficient for 1c. The reasons for such behavior are discussed by taking into account arguments concerning the driving force and reorganization energy of the complexes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据