4.6 Article

TrpC3 Regulates Hypertrophy-Associated Gene Expression without Affecting Myocyte Beating or Cell Size

期刊

PLOS ONE
卷 2, 期 8, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0000802

关键词

-

资金

  1. NIH [RO1 NS048564]
  2. Searle Scholars Program
  3. McKnight Endowment for Neuroscience
  4. Burroughs Wellcome Trust
  5. Stanford Medical Scientist Training Program ( MSTP) fellowship

向作者/读者索取更多资源

Pathological cardiac hypertrophy is associated with an increased risk of heart failure and cardiovascular mortality. Calcium (Ca2+)-regulated gene expression is essential for the induction of hypertrophy, but it is not known how myocytes distinguish between the Ca2+ signals that regulate contraction and those that lead to cardiac hypertrophy. We used in vitro neonatal rat ventricular myocytes to perform an RNA interference (RNAi) screen for ion channels that mediate Ca2+-dependent gene expression in response to hypertrophic stimuli. We identified several ion channels that are linked to hypertrophic gene expression, including transient receptor potential C3 (TrpC3). RNAi-mediated knockdown of TrpC3 decreases expression of hypertrophy-associated genes such as the A- and B-type natriuretic peptides (ANP and BNP) in response to numerous hypertrophic stimuli, while TrpC3 overexpression increases BNP expression. Furthermore, stimuli that induce hypertrophy dramatically increase TrpC3 mRNA levels. Importantly, whereas TrpC3-knockdown strongly reduces gene expression associated with hypertrophy, it has a negligible effect on cell size and on myocyte beating. These results suggest that Ca2+ influx through TrpC3 channels increases transcription of genes associated with hypertrophy but does not regulate the signaling pathways that control cell size or contraction. Thus TrpC3 may represent an important therapeutic target for the treatment of cardiac hypertrophy and heart failure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据