4.7 Article

Competing ligand exchange-solid phase extraction method for the determination of the complexation of dissolved inorganic mercury(II) in natural waters

期刊

ANALYTICA CHIMICA ACTA
卷 598, 期 2, 页码 318-333

出版社

ELSEVIER
DOI: 10.1016/j.aca.2007.07.043

关键词

mercury; complexation; speciation; ligands; freshwater

向作者/读者索取更多资源

A method employing dual competitive ligand exchange followed by solid phase extraction (CLE-SPE) for characterizing the complexation of inorganic Hg(II) in natural waters is described. This method employs parallel use of two competing ligands: diethyldithiolcarbamate (DEDC), which forms hydrophobic complexes with Hg(II), and thiosalicylic acid (TSA), which forms hydrophilic complexes with Hg(II). Inorganic mercury complexed by natural and competing ligands are separated based on hydrophobicity using C-18 solid phase extraction columns. Data modeling allows for the calculation of the concentration and conditional stability constants of natural ligands capable of complexing Hg(II) in both the operationally defined hydrophilic and hydrophobic fractions. The use of multiple ligand concentrations, and thus multiple analytical windows, to characterize different ligand classes within both of these two fractions is described. Studies of the kinetics of the ligand exchange involved, potential for changes in the stability of natural ligands during freezing and thawing, potential breakthrough during solid phase extraction, as well as the method's precision and estimation of error, are presented and discussed. Results from the application of the method to natural freshwaters demonstrated that in the limited samples collected over 99.99% of the ambient H-HgL(cond), Hg2+) on the order of 10(30), values similar to that of inorganic mercury is strongly complexed by ligands with conditional stability constants (K-HgL(cond), Hg2+) reduced sulfur ligands. At ambient conditions 85-90% of the mercury exists in hydrophobic complexes in these freshwaters, but strong Hg-binding ligands exist in both the hydrophobic and hydrophilic fractions. (c) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据