4.7 Article

Thermal evolution of the Earth: Secular changes and fluctuations of plate characteristics

期刊

EARTH AND PLANETARY SCIENCE LETTERS
卷 260, 期 3-4, 页码 465-481

出版社

ELSEVIER
DOI: 10.1016/j.epsl.2007.05.046

关键词

cooling of the Earth; plate tectonics; early Earth; continental growth

向作者/读者索取更多资源

The average secular cooling rate of the Earth can be deduced from compositional variations of mantle melts through time and from theological conditions at the onset of sub-solidus convection at the end of the initial magma ocean phase. The constraint that this places on the characteristics of mantle convection in the past are investigated using the global heat balance equation and a simple parameterization for the heat loss of the Earth. All heat loss parameterization schemes depend on a closure equation for the maximum age of oceanic plates. We use a scheme that accounts for the present-day distribution of heat flux at Earth's surface and that does not depend on any assumption about the dynamics of convection with rigid plates, which remain poorly understood. We show that heat supply to the base of continents and transient continental thermal regimes cannot be ignored. We find that the maximum sea floor age has not changed by large amounts over the last 3 Ga. Calculations lead to a maximum temperature at an age of about 3 Ga and cannot be extrapolated further back in time. By construction, these calculations are based on the present-day tectonic regime characterized by the subduction of large oceanic plates and hence indicate that this regime did not prevail until an age of about 3 Ga. According to this interpretation, the onset of rapid continental growth occurred when the current plate regime became stable. (C) 2007 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据