4.6 Article

Paramagnetic silica-coated nanocrystals as an advanced MRI contrast agent

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 111, 期 34, 页码 12542-12551

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp074072p

关键词

-

向作者/读者索取更多资源

We present a robust and general method for embedding nanoparticles, such as quantum dots (QD) or colloidal gold (Au) nanocrystals, into a highly water-soluble thin silica shell doped with paramagnetic gadolinium (Gd3+) ions without negatively impacting the optical properties of the QD or Au nanoparticle cores. The ultrathin silica shell has been covalently linked to Gd3+ ions chelator, tetraazacyclododecanetetraacetic acid (DOTA). The resulting complex has a diameter of 8 to 15 nm and is soluble in high ionic strength buffers at pH values ranging from approximately 4 to 11. For this system, nanoparticle concentrations exceed 50 AM, while most other nanoparticles might aggregate. In magnetic resonance imaging (MRI) experiments at clinical magnetic field strengths of 1.4 T (H-1 resonance frequency of 60 MHz), the gadolinium- DOTA (Gd-DOTA) attached to SiO2-coated QDs has a spin-lattice (T-1) particle relaxivity (r(1)) and a spin-spin (T-2) particle relaxivity (r(2)) of 1019 +/- 19 mM(-1)s(-1) and 2438 +/- 46 mM(-1) s(-1), respectively, for a 8-nm QD. The particle relaxivity has been correlated to the number of Gd3+ covalently linked to the silica shell. At 1.4 T, the Gd-DOTA ion relaxivities, r(1) and r(2), respectively, are 23 +/- 0.40 mM(-1)s(-1) and 54 +/- 1.0 mM(-1)s(-1). The sensitivity of our probes is in the 100-nM range for 8-10 nm particles and reaches 10 nM for particles approximately 15 nm in diameter. Preliminary dynamic contrast enhancement MRI experiments in mice revealed that silica-coated MRI probes are cleared from the renal system into the bladder with no observable affects on the health of the animal. This current approach may offer numerous advantages over other similar approaches, (1,2) including greater relaxivity and greater simplicity for the synthesis process of dual modality contrast agents that allow both MRI and optical detection as well as applicability to other nanoparticles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据