4.5 Article

Slot region electron loss timescales due to plasmaspheric hiss and lightning-generated whistlers

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2007JA012413

关键词

-

资金

  1. NERC [bas010022] Funding Source: UKRI
  2. Natural Environment Research Council [bas010022] Funding Source: researchfish

向作者/读者索取更多资源

Energetic electrons ( E > 100 keV) in the Earth's radiation belts undergo Dopplershifted cyclotron resonant interactions with a variety of whistler mode waves leading to pitch angle scattering and subsequent loss to the atmosphere. In this study we assess the relative importance of plasmaspheric hiss and lightning-generated whistlers in the slot region and beyond. Electron loss timescales are determined using the Pitch Angle and energy Diffusion of Ions and Electrons (PADIE) code with global models of the spectral distributions of the wave power based on CRRES observations. Our results show that plasmaspheric hiss propagating at small and intermediate wave normal angles is a significant scattering agent in the slot region and beyond. In contrast, plasmaspheric hiss propagating at large wave normal angles and lightning-generated whistlers do not contribute significantly to radiation belt loss. The loss timescale of 2 MeV electrons due to plasmaspheric hiss propagating at small and intermediate wave normal angles in the center of the slot region ( L = 2.5) lies in the range 1-10 days, consistent with recent Solar Anomalous and Magnetospheric Particle Explorer ( SAMPEX) observations. Wave turbulence in space, which is responsible for the generation plasmaspheric hiss, thus leads to the formation of the slot region. During active periods, losses due to plasmaspheric hiss may occur on a timescale of 1 day or less for a wide range of energies, 200 keV < E < 1 MeV, in the region 3.5 < L < 4.0. Plasmaspheric hiss may thus also be a significant loss process in the inner region of the outer radiation belt during magnetically disturbed periods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据